Dynamic Characteristics of Single-Loop Overconstrained Mechanisms
نویسندگان
چکیده
منابع مشابه
Overconstrained Mechanisms Based on Trapezohedra
We start with a special polyhedron, the so-called ‘trapezohedron’ (see E. WEISSTEIN [11]). It is dual to an antiprism and can be generated as the intersection of two suitable congruent regular pyramids with regular n-gons as directing polygons (n > 2). Its faces are 2n congruent trapezoids (kites). We use this polyhedron to construct some generalisations of the Fulleroid-like mechanisms describ...
متن کاملAnalysis and Synthesis of Overconstrained Mechanisms
This paper describes how, based on a method originated by Raghavan and Roth and elaborated by Mavroidis and Roth, a systematic approach is defined in order to obtain and solve the input-output equations of any overconstrained mechanism. We show that the key to study overconstrained mechanisms lies in analyzing a certain matrix. We are using this matrix to prove overconstraint of special structu...
متن کاملMethods for Force Analysis of Overconstrained Parallel Mechanisms: A Review
The force analysis of overconstrained PMs is relatively complex and difficult, for which the methods have always been a research hotspot. However, few literatures analyze the characteristics and application scopes of the various methods, which is not convenient for researchers and engineers to master and adopt them properly. A review of the methods for force analysis of both passive and active ...
متن کاملOn the flexibility and symmetry of overconstrained mechanisms.
In kinematics, a framework is called overconstrained if its continuous flexibility is caused by particular dimensions; in the generic case, a framework of this type is rigid. Famous examples of overconstrained structures are the Bricard octahedra, the Bennett isogram, the Grünbaum framework, Bottema's 16-bar mechanism, Chasles' body-bar framework, Burmester's focal mechanism or flexible quad me...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C
سال: 1980
ISSN: 0387-5024,1884-8354
DOI: 10.1299/kikaic.46.418